3.2.94 \(\int \frac {a+b \text {arctanh}(c \sqrt {x})}{x^4} \, dx\) [194]

3.2.94.1 Optimal result
3.2.94.2 Mathematica [A] (verified)
3.2.94.3 Rubi [A] (verified)
3.2.94.4 Maple [A] (verified)
3.2.94.5 Fricas [A] (verification not implemented)
3.2.94.6 Sympy [B] (verification not implemented)
3.2.94.7 Maxima [A] (verification not implemented)
3.2.94.8 Giac [B] (verification not implemented)
3.2.94.9 Mupad [B] (verification not implemented)

3.2.94.1 Optimal result

Integrand size = 16, antiderivative size = 73 \[ \int \frac {a+b \text {arctanh}\left (c \sqrt {x}\right )}{x^4} \, dx=-\frac {b c}{15 x^{5/2}}-\frac {b c^3}{9 x^{3/2}}-\frac {b c^5}{3 \sqrt {x}}+\frac {1}{3} b c^6 \text {arctanh}\left (c \sqrt {x}\right )-\frac {a+b \text {arctanh}\left (c \sqrt {x}\right )}{3 x^3} \]

output
-1/15*b*c/x^(5/2)-1/9*b*c^3/x^(3/2)+1/3*b*c^6*arctanh(c*x^(1/2))+1/3*(-a-b 
*arctanh(c*x^(1/2)))/x^3-1/3*b*c^5/x^(1/2)
 
3.2.94.2 Mathematica [A] (verified)

Time = 0.03 (sec) , antiderivative size = 99, normalized size of antiderivative = 1.36 \[ \int \frac {a+b \text {arctanh}\left (c \sqrt {x}\right )}{x^4} \, dx=-\frac {a}{3 x^3}-\frac {b c}{15 x^{5/2}}-\frac {b c^3}{9 x^{3/2}}-\frac {b c^5}{3 \sqrt {x}}-\frac {b \text {arctanh}\left (c \sqrt {x}\right )}{3 x^3}-\frac {1}{6} b c^6 \log \left (1-c \sqrt {x}\right )+\frac {1}{6} b c^6 \log \left (1+c \sqrt {x}\right ) \]

input
Integrate[(a + b*ArcTanh[c*Sqrt[x]])/x^4,x]
 
output
-1/3*a/x^3 - (b*c)/(15*x^(5/2)) - (b*c^3)/(9*x^(3/2)) - (b*c^5)/(3*Sqrt[x] 
) - (b*ArcTanh[c*Sqrt[x]])/(3*x^3) - (b*c^6*Log[1 - c*Sqrt[x]])/6 + (b*c^6 
*Log[1 + c*Sqrt[x]])/6
 
3.2.94.3 Rubi [A] (verified)

Time = 0.23 (sec) , antiderivative size = 73, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.375, Rules used = {6452, 61, 61, 61, 73, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \text {arctanh}\left (c \sqrt {x}\right )}{x^4} \, dx\)

\(\Big \downarrow \) 6452

\(\displaystyle \frac {1}{6} b c \int \frac {1}{x^{7/2} \left (1-c^2 x\right )}dx-\frac {a+b \text {arctanh}\left (c \sqrt {x}\right )}{3 x^3}\)

\(\Big \downarrow \) 61

\(\displaystyle \frac {1}{6} b c \left (c^2 \int \frac {1}{x^{5/2} \left (1-c^2 x\right )}dx-\frac {2}{5 x^{5/2}}\right )-\frac {a+b \text {arctanh}\left (c \sqrt {x}\right )}{3 x^3}\)

\(\Big \downarrow \) 61

\(\displaystyle \frac {1}{6} b c \left (c^2 \left (c^2 \int \frac {1}{x^{3/2} \left (1-c^2 x\right )}dx-\frac {2}{3 x^{3/2}}\right )-\frac {2}{5 x^{5/2}}\right )-\frac {a+b \text {arctanh}\left (c \sqrt {x}\right )}{3 x^3}\)

\(\Big \downarrow \) 61

\(\displaystyle \frac {1}{6} b c \left (c^2 \left (c^2 \left (c^2 \int \frac {1}{\sqrt {x} \left (1-c^2 x\right )}dx-\frac {2}{\sqrt {x}}\right )-\frac {2}{3 x^{3/2}}\right )-\frac {2}{5 x^{5/2}}\right )-\frac {a+b \text {arctanh}\left (c \sqrt {x}\right )}{3 x^3}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {1}{6} b c \left (c^2 \left (c^2 \left (2 c^2 \int \frac {1}{1-c^2 x}d\sqrt {x}-\frac {2}{\sqrt {x}}\right )-\frac {2}{3 x^{3/2}}\right )-\frac {2}{5 x^{5/2}}\right )-\frac {a+b \text {arctanh}\left (c \sqrt {x}\right )}{3 x^3}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {1}{6} b c \left (c^2 \left (c^2 \left (2 c \text {arctanh}\left (c \sqrt {x}\right )-\frac {2}{\sqrt {x}}\right )-\frac {2}{3 x^{3/2}}\right )-\frac {2}{5 x^{5/2}}\right )-\frac {a+b \text {arctanh}\left (c \sqrt {x}\right )}{3 x^3}\)

input
Int[(a + b*ArcTanh[c*Sqrt[x]])/x^4,x]
 
output
-1/3*(a + b*ArcTanh[c*Sqrt[x]])/x^3 + (b*c*(-2/(5*x^(5/2)) + c^2*(-2/(3*x^ 
(3/2)) + c^2*(-2/Sqrt[x] + 2*c*ArcTanh[c*Sqrt[x]]))))/6
 

3.2.94.3.1 Defintions of rubi rules used

rule 61
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((b*c - a*d)*(m + 1))), x] - Simp[d*(( 
m + n + 2)/((b*c - a*d)*(m + 1)))   Int[(a + b*x)^(m + 1)*(c + d*x)^n, x], 
x] /; FreeQ[{a, b, c, d, n}, x] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0 
] || (NeQ[c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d 
, m, n, x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 6452
Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] : 
> Simp[x^(m + 1)*((a + b*ArcTanh[c*x^n])^p/(m + 1)), x] - Simp[b*c*n*(p/(m 
+ 1))   Int[x^(m + n)*((a + b*ArcTanh[c*x^n])^(p - 1)/(1 - c^2*x^(2*n))), x 
], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0] && (EqQ[p, 1] || (EqQ[n, 1 
] && IntegerQ[m])) && NeQ[m, -1]
 
3.2.94.4 Maple [A] (verified)

Time = 0.72 (sec) , antiderivative size = 73, normalized size of antiderivative = 1.00

method result size
parts \(-\frac {a}{3 x^{3}}+2 b \,c^{6} \left (-\frac {\operatorname {arctanh}\left (c \sqrt {x}\right )}{6 c^{6} x^{3}}-\frac {1}{30 c^{5} x^{\frac {5}{2}}}-\frac {1}{18 c^{3} x^{\frac {3}{2}}}-\frac {1}{6 c \sqrt {x}}+\frac {\ln \left (1+c \sqrt {x}\right )}{12}-\frac {\ln \left (c \sqrt {x}-1\right )}{12}\right )\) \(73\)
derivativedivides \(2 c^{6} \left (-\frac {a}{6 c^{6} x^{3}}+b \left (-\frac {\operatorname {arctanh}\left (c \sqrt {x}\right )}{6 c^{6} x^{3}}-\frac {1}{30 c^{5} x^{\frac {5}{2}}}-\frac {1}{18 c^{3} x^{\frac {3}{2}}}-\frac {1}{6 c \sqrt {x}}+\frac {\ln \left (1+c \sqrt {x}\right )}{12}-\frac {\ln \left (c \sqrt {x}-1\right )}{12}\right )\right )\) \(77\)
default \(2 c^{6} \left (-\frac {a}{6 c^{6} x^{3}}+b \left (-\frac {\operatorname {arctanh}\left (c \sqrt {x}\right )}{6 c^{6} x^{3}}-\frac {1}{30 c^{5} x^{\frac {5}{2}}}-\frac {1}{18 c^{3} x^{\frac {3}{2}}}-\frac {1}{6 c \sqrt {x}}+\frac {\ln \left (1+c \sqrt {x}\right )}{12}-\frac {\ln \left (c \sqrt {x}-1\right )}{12}\right )\right )\) \(77\)

input
int((a+b*arctanh(c*x^(1/2)))/x^4,x,method=_RETURNVERBOSE)
 
output
-1/3*a/x^3+2*b*c^6*(-1/6/c^6/x^3*arctanh(c*x^(1/2))-1/30/c^5/x^(5/2)-1/18/ 
c^3/x^(3/2)-1/6/c/x^(1/2)+1/12*ln(1+c*x^(1/2))-1/12*ln(c*x^(1/2)-1))
 
3.2.94.5 Fricas [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 74, normalized size of antiderivative = 1.01 \[ \int \frac {a+b \text {arctanh}\left (c \sqrt {x}\right )}{x^4} \, dx=\frac {15 \, {\left (b c^{6} x^{3} - b\right )} \log \left (-\frac {c^{2} x + 2 \, c \sqrt {x} + 1}{c^{2} x - 1}\right ) - 2 \, {\left (15 \, b c^{5} x^{2} + 5 \, b c^{3} x + 3 \, b c\right )} \sqrt {x} - 30 \, a}{90 \, x^{3}} \]

input
integrate((a+b*arctanh(c*x^(1/2)))/x^4,x, algorithm="fricas")
 
output
1/90*(15*(b*c^6*x^3 - b)*log(-(c^2*x + 2*c*sqrt(x) + 1)/(c^2*x - 1)) - 2*( 
15*b*c^5*x^2 + 5*b*c^3*x + 3*b*c)*sqrt(x) - 30*a)/x^3
 
3.2.94.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 371 vs. \(2 (68) = 136\).

Time = 19.81 (sec) , antiderivative size = 371, normalized size of antiderivative = 5.08 \[ \int \frac {a+b \text {arctanh}\left (c \sqrt {x}\right )}{x^4} \, dx=\begin {cases} - \frac {a}{3 x^{3}} + \frac {b \operatorname {atanh}{\left (\sqrt {x} \sqrt {\frac {1}{x}} \right )}}{3 x^{3}} & \text {for}\: c = - \sqrt {\frac {1}{x}} \\- \frac {a}{3 x^{3}} - \frac {b \operatorname {atanh}{\left (\sqrt {x} \sqrt {\frac {1}{x}} \right )}}{3 x^{3}} & \text {for}\: c = \sqrt {\frac {1}{x}} \\- \frac {15 a c^{2} x^{\frac {3}{2}}}{45 c^{2} x^{\frac {9}{2}} - 45 x^{\frac {7}{2}}} + \frac {15 a \sqrt {x}}{45 c^{2} x^{\frac {9}{2}} - 45 x^{\frac {7}{2}}} + \frac {15 b c^{8} x^{\frac {9}{2}} \operatorname {atanh}{\left (c \sqrt {x} \right )}}{45 c^{2} x^{\frac {9}{2}} - 45 x^{\frac {7}{2}}} - \frac {15 b c^{7} x^{4}}{45 c^{2} x^{\frac {9}{2}} - 45 x^{\frac {7}{2}}} - \frac {15 b c^{6} x^{\frac {7}{2}} \operatorname {atanh}{\left (c \sqrt {x} \right )}}{45 c^{2} x^{\frac {9}{2}} - 45 x^{\frac {7}{2}}} + \frac {10 b c^{5} x^{3}}{45 c^{2} x^{\frac {9}{2}} - 45 x^{\frac {7}{2}}} + \frac {2 b c^{3} x^{2}}{45 c^{2} x^{\frac {9}{2}} - 45 x^{\frac {7}{2}}} - \frac {15 b c^{2} x^{\frac {3}{2}} \operatorname {atanh}{\left (c \sqrt {x} \right )}}{45 c^{2} x^{\frac {9}{2}} - 45 x^{\frac {7}{2}}} + \frac {3 b c x}{45 c^{2} x^{\frac {9}{2}} - 45 x^{\frac {7}{2}}} + \frac {15 b \sqrt {x} \operatorname {atanh}{\left (c \sqrt {x} \right )}}{45 c^{2} x^{\frac {9}{2}} - 45 x^{\frac {7}{2}}} & \text {otherwise} \end {cases} \]

input
integrate((a+b*atanh(c*x**(1/2)))/x**4,x)
 
output
Piecewise((-a/(3*x**3) + b*atanh(sqrt(x)*sqrt(1/x))/(3*x**3), Eq(c, -sqrt( 
1/x))), (-a/(3*x**3) - b*atanh(sqrt(x)*sqrt(1/x))/(3*x**3), Eq(c, sqrt(1/x 
))), (-15*a*c**2*x**(3/2)/(45*c**2*x**(9/2) - 45*x**(7/2)) + 15*a*sqrt(x)/ 
(45*c**2*x**(9/2) - 45*x**(7/2)) + 15*b*c**8*x**(9/2)*atanh(c*sqrt(x))/(45 
*c**2*x**(9/2) - 45*x**(7/2)) - 15*b*c**7*x**4/(45*c**2*x**(9/2) - 45*x**( 
7/2)) - 15*b*c**6*x**(7/2)*atanh(c*sqrt(x))/(45*c**2*x**(9/2) - 45*x**(7/2 
)) + 10*b*c**5*x**3/(45*c**2*x**(9/2) - 45*x**(7/2)) + 2*b*c**3*x**2/(45*c 
**2*x**(9/2) - 45*x**(7/2)) - 15*b*c**2*x**(3/2)*atanh(c*sqrt(x))/(45*c**2 
*x**(9/2) - 45*x**(7/2)) + 3*b*c*x/(45*c**2*x**(9/2) - 45*x**(7/2)) + 15*b 
*sqrt(x)*atanh(c*sqrt(x))/(45*c**2*x**(9/2) - 45*x**(7/2)), True))
 
3.2.94.7 Maxima [A] (verification not implemented)

Time = 0.20 (sec) , antiderivative size = 72, normalized size of antiderivative = 0.99 \[ \int \frac {a+b \text {arctanh}\left (c \sqrt {x}\right )}{x^4} \, dx=\frac {1}{90} \, {\left ({\left (15 \, c^{5} \log \left (c \sqrt {x} + 1\right ) - 15 \, c^{5} \log \left (c \sqrt {x} - 1\right ) - \frac {2 \, {\left (15 \, c^{4} x^{2} + 5 \, c^{2} x + 3\right )}}{x^{\frac {5}{2}}}\right )} c - \frac {30 \, \operatorname {artanh}\left (c \sqrt {x}\right )}{x^{3}}\right )} b - \frac {a}{3 \, x^{3}} \]

input
integrate((a+b*arctanh(c*x^(1/2)))/x^4,x, algorithm="maxima")
 
output
1/90*((15*c^5*log(c*sqrt(x) + 1) - 15*c^5*log(c*sqrt(x) - 1) - 2*(15*c^4*x 
^2 + 5*c^2*x + 3)/x^(5/2))*c - 30*arctanh(c*sqrt(x))/x^3)*b - 1/3*a/x^3
 
3.2.94.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 534 vs. \(2 (53) = 106\).

Time = 0.30 (sec) , antiderivative size = 534, normalized size of antiderivative = 7.32 \[ \int \frac {a+b \text {arctanh}\left (c \sqrt {x}\right )}{x^4} \, dx=\frac {2}{45} \, c {\left (\frac {15 \, {\left (\frac {3 \, {\left (c \sqrt {x} + 1\right )}^{5} b c^{5}}{{\left (c \sqrt {x} - 1\right )}^{5}} + \frac {10 \, {\left (c \sqrt {x} + 1\right )}^{3} b c^{5}}{{\left (c \sqrt {x} - 1\right )}^{3}} + \frac {3 \, {\left (c \sqrt {x} + 1\right )} b c^{5}}{c \sqrt {x} - 1}\right )} \log \left (-\frac {c \sqrt {x} + 1}{c \sqrt {x} - 1}\right )}{\frac {{\left (c \sqrt {x} + 1\right )}^{6}}{{\left (c \sqrt {x} - 1\right )}^{6}} + \frac {6 \, {\left (c \sqrt {x} + 1\right )}^{5}}{{\left (c \sqrt {x} - 1\right )}^{5}} + \frac {15 \, {\left (c \sqrt {x} + 1\right )}^{4}}{{\left (c \sqrt {x} - 1\right )}^{4}} + \frac {20 \, {\left (c \sqrt {x} + 1\right )}^{3}}{{\left (c \sqrt {x} - 1\right )}^{3}} + \frac {15 \, {\left (c \sqrt {x} + 1\right )}^{2}}{{\left (c \sqrt {x} - 1\right )}^{2}} + \frac {6 \, {\left (c \sqrt {x} + 1\right )}}{c \sqrt {x} - 1} + 1} + \frac {\frac {90 \, {\left (c \sqrt {x} + 1\right )}^{5} a c^{5}}{{\left (c \sqrt {x} - 1\right )}^{5}} + \frac {300 \, {\left (c \sqrt {x} + 1\right )}^{3} a c^{5}}{{\left (c \sqrt {x} - 1\right )}^{3}} + \frac {90 \, {\left (c \sqrt {x} + 1\right )} a c^{5}}{c \sqrt {x} - 1} + \frac {45 \, {\left (c \sqrt {x} + 1\right )}^{5} b c^{5}}{{\left (c \sqrt {x} - 1\right )}^{5}} + \frac {135 \, {\left (c \sqrt {x} + 1\right )}^{4} b c^{5}}{{\left (c \sqrt {x} - 1\right )}^{4}} + \frac {230 \, {\left (c \sqrt {x} + 1\right )}^{3} b c^{5}}{{\left (c \sqrt {x} - 1\right )}^{3}} + \frac {210 \, {\left (c \sqrt {x} + 1\right )}^{2} b c^{5}}{{\left (c \sqrt {x} - 1\right )}^{2}} + \frac {93 \, {\left (c \sqrt {x} + 1\right )} b c^{5}}{c \sqrt {x} - 1} + 23 \, b c^{5}}{\frac {{\left (c \sqrt {x} + 1\right )}^{6}}{{\left (c \sqrt {x} - 1\right )}^{6}} + \frac {6 \, {\left (c \sqrt {x} + 1\right )}^{5}}{{\left (c \sqrt {x} - 1\right )}^{5}} + \frac {15 \, {\left (c \sqrt {x} + 1\right )}^{4}}{{\left (c \sqrt {x} - 1\right )}^{4}} + \frac {20 \, {\left (c \sqrt {x} + 1\right )}^{3}}{{\left (c \sqrt {x} - 1\right )}^{3}} + \frac {15 \, {\left (c \sqrt {x} + 1\right )}^{2}}{{\left (c \sqrt {x} - 1\right )}^{2}} + \frac {6 \, {\left (c \sqrt {x} + 1\right )}}{c \sqrt {x} - 1} + 1}\right )} \]

input
integrate((a+b*arctanh(c*x^(1/2)))/x^4,x, algorithm="giac")
 
output
2/45*c*(15*(3*(c*sqrt(x) + 1)^5*b*c^5/(c*sqrt(x) - 1)^5 + 10*(c*sqrt(x) + 
1)^3*b*c^5/(c*sqrt(x) - 1)^3 + 3*(c*sqrt(x) + 1)*b*c^5/(c*sqrt(x) - 1))*lo 
g(-(c*sqrt(x) + 1)/(c*sqrt(x) - 1))/((c*sqrt(x) + 1)^6/(c*sqrt(x) - 1)^6 + 
 6*(c*sqrt(x) + 1)^5/(c*sqrt(x) - 1)^5 + 15*(c*sqrt(x) + 1)^4/(c*sqrt(x) - 
 1)^4 + 20*(c*sqrt(x) + 1)^3/(c*sqrt(x) - 1)^3 + 15*(c*sqrt(x) + 1)^2/(c*s 
qrt(x) - 1)^2 + 6*(c*sqrt(x) + 1)/(c*sqrt(x) - 1) + 1) + (90*(c*sqrt(x) + 
1)^5*a*c^5/(c*sqrt(x) - 1)^5 + 300*(c*sqrt(x) + 1)^3*a*c^5/(c*sqrt(x) - 1) 
^3 + 90*(c*sqrt(x) + 1)*a*c^5/(c*sqrt(x) - 1) + 45*(c*sqrt(x) + 1)^5*b*c^5 
/(c*sqrt(x) - 1)^5 + 135*(c*sqrt(x) + 1)^4*b*c^5/(c*sqrt(x) - 1)^4 + 230*( 
c*sqrt(x) + 1)^3*b*c^5/(c*sqrt(x) - 1)^3 + 210*(c*sqrt(x) + 1)^2*b*c^5/(c* 
sqrt(x) - 1)^2 + 93*(c*sqrt(x) + 1)*b*c^5/(c*sqrt(x) - 1) + 23*b*c^5)/((c* 
sqrt(x) + 1)^6/(c*sqrt(x) - 1)^6 + 6*(c*sqrt(x) + 1)^5/(c*sqrt(x) - 1)^5 + 
 15*(c*sqrt(x) + 1)^4/(c*sqrt(x) - 1)^4 + 20*(c*sqrt(x) + 1)^3/(c*sqrt(x) 
- 1)^3 + 15*(c*sqrt(x) + 1)^2/(c*sqrt(x) - 1)^2 + 6*(c*sqrt(x) + 1)/(c*sqr 
t(x) - 1) + 1))
 
3.2.94.9 Mupad [B] (verification not implemented)

Time = 3.80 (sec) , antiderivative size = 69, normalized size of antiderivative = 0.95 \[ \int \frac {a+b \text {arctanh}\left (c \sqrt {x}\right )}{x^4} \, dx=\frac {b\,c^6\,\mathrm {atanh}\left (c\,\sqrt {x}\right )}{3}-\frac {b\,\left (15\,\ln \left (c\,\sqrt {x}+1\right )-15\,\ln \left (1-c\,\sqrt {x}\right )+6\,c\,\sqrt {x}+10\,c^3\,x^{3/2}+30\,c^5\,x^{5/2}\right )}{90\,x^3}-\frac {a}{3\,x^3} \]

input
int((a + b*atanh(c*x^(1/2)))/x^4,x)
 
output
(b*c^6*atanh(c*x^(1/2)))/3 - (b*(15*log(c*x^(1/2) + 1) - 15*log(1 - c*x^(1 
/2)) + 6*c*x^(1/2) + 10*c^3*x^(3/2) + 30*c^5*x^(5/2)))/(90*x^3) - a/(3*x^3 
)